
AFRL-SR-AR-TR-09-0081

REPORT DOCUMENTATION PAGE

The public reporting burden for this collection of information Is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing the burden, to the Department of Defense, Executive Service Directorate (0704-0188) Respondents should be aware that notwithstanding any other provision of law, no
person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ORGANIZATION.
1. REPORT DATE (DD-MM-YYYY)

18-02-2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

15/02/07-30/11/08
4. TITLE AND SUBTITLE
Combining Exact and Heuristic Approaches to Discrete Optimization

5a. CONTRACT NUMBER

FA9550-07-1-0177

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
George L. Nemhauser
Mathieu W. Savelsbergh

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Georgia Tech Research Corporation

505 10th St.

Atlanta, GA 30332-0001

8. PERFORMING ORGANIZATION
REPORT NUMBER

240664R

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Office of Scientific Research/Nl.

875 N. Randolph St., Room 3112
Arlington, VA 22203
Dr. Donald Hearn

10. SPONSOR/MONITOR'S ACRONYM(S)

AFOSR

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

13. SUPPLEMENTARY NOTES
none

14. ABSTRACT
In the last decade the computational power of discrete optimization methodology has increased remarkably to the point where problems that could
not be solved with days of computation can now be solved in minutes by commercial solvers. This success has stimulated the need lor methodology
to solve even much larger problems and the desire to solve problems in real-time. We have conducted research that has yielded computationally

effective algorithms to provide high-quality solutions to very large-scale planning problems and high-quality solutions in (nearly) real-time to
operational problems. Traditionally, this goal has been pursued with heuristic approaches. The underlying theme of our research has been different.
We use exact optimization whenever possible. For example, to solve problems that are too large for exact optimization, we embed exact

optimization in a heuristic search algorithm. To solve real-time instances that differ only by small perturbations of coefficients, we use exact
optimization as a planning tool whereby we solve a core instance exactly and use results from its solution to make the solution of the real-time
instances much faster than would be the case if they were solved from scratch.

15. SUBJECT TERMS
Discrete optimization, heuristics, exact methods

16. SECURITY CLASSIFICATION OF:
a. REPORT

u

b. ABSTRACT

r
c. THIS PAGE

U

17. LIMITATION OF
ABSTRACT

uu

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON
R. Scott Goodwin

19b. TELEPHONE NUMBER (Include area code)
404-894-6920

Standard Form 298 (Rev 8/98)
Prescnbed by ANSI Std Z39 18

Adobe Professional 7 0

Combining Exact and Heuristic Approaches
for Discrete Optimization

George L.Nemhauser, Martin W.P. Savelsbergh
Contract #: FA9550-07-1-0177

Final report

Executive Summary

In the last decade the computational power of discrete optimization methodology has increased
remarkably to the point where problems that could not be solved with days of computation can
now be solved in minutes by commercial solvers such as CPLEX and XPRESS. This success has
stimulated the need for methodology to solve even much larger problems and the desire to solve
problems in real-time. We have conducted research that has yielded computationally effective
algorithms to provide high-quality solutions to very large-scale planning problems and high-quality
solutions in (nearly) real-time to operational problems.

Traditionally, this goal has been pursued with heuristic approaches. The underlying theme
of our research has been different. We use exact optimization whenever possible. For example,
to solve problems that are too large for exact optimization, we embed exact optimization in a
heuristic search algorithm. To solve real-time instances that differ only by small perturbations of
coefficients, we use exact optimization as a planning tool whereby we solve a core instance exactly
and use results from its solution to make the solution of the real-time instances much faster than
would be the case if they were solved from scratch. Furthermore, we revisit the least studied and
least understood aspect of integer programming methodology, namely branching, and develop novel
branching strategies based on learning concepts and restart ideas.

The faculty involved in this research are Professor George Nemhauser (PI) and Professor Martin
Savelsbergh (co-PI). The students involved are Michael Hewitt, Fatma Kilinc-Karzan, and Juan
Pablo Vielma. Hewitt is expected to complete his PhD thesis entitled Combining Exact and
Heuristic Methods for Discrete Optimization this summer. Vielma will also complete this summer
and his thesis is entitled Mixed Integer Programming Approaches for Nonlinear and Stochastic
Programming. Papers submitted for publication so far are:

M. Hewitt, G.L. Nemhauser, and M.W.P. Savelsbergh. "Combining Exact and Heuristic Ap-
proaches for the Capacitated Fixed Charge Network Flow Problem." Submitted to INFORMS .1.
on Computing (2008).

F. Kihng-Karzan, A. Toreillo, S. Ahmed, G.L. Nemhauser, M.W.P. Savelsbergh. "Approximating
the Stability Region for Binary Mixed-Integer Programs." Submitted to Operations Research
Letters (2008).

F. Kilmg-Karzan, G.L. Nemhauser, M.W.P. Savelsbergh. "Information Based Branching Rules for
Binary Mixed Integer Problems." Submitted to INFORMS J. on Computing (2009).

20090325299

1 Embedding Exact Optimization in Heuristic Search

Despite the impressive gains that have occurred in mixed-integer programming (MIP) solvers in the
last decade, there are still many significant practical problems that cannot be solved to optimalitv
using the leading commercial solvers such as CPLEX and XPRESS. These problems are either
too large or too complex for reasons such as difficulty in finding a feasible solution or a large gap
between the values of the linear programming (LP) relaxations and MIP optimal solutions. In such
situations, a pragmatic alternative is to search for provably good solutions.

One of our research thrusts has been to use neighborhood search to obtain nearly optimal
solutions to huge and complex problems. The basic idea is very simple. A subproblem involving a
suitably small subset of the variables is selected and all other variables are fixed. This subproblem
is solved by a MIP solver. Hopefully a better solution to the whole problem is obtained. Then we
repeat the process by choosing a different subproblem (see Algorithm 1).

Algorithm 1 Neighborhood Search
while the search time has not exceeded a prespecified limit T do

Choose a subset of variables V
Solve the IP defined by variables in V
if an improved solution is found then

Update the global solution
end if

end while

The key to making this approach work is problem dependent. We illustrate this approach on
the Fixed Charge Network Flow (FCNF) problem, which is a classic discrete optimization problem
in which a set of commodities has to be routed through a directed network. Each commodity has
an origin, a destination, and a quantity. Each network arc has a capacity. There is a fixed cost
associated with using an arc and a variable cost that depends on the quantity routed along the
arc. The objective is to minimize the total cost. Two versions of the problem are considered:
commodities have to be routed along a single path and commodities can be routed along multiple
paths.

By selecting a suitably small subset of the commodities and assuming that the flow paths for
all other commodities are fixed a tractable integer program can be defined and solved using an
IP solver. Similarly, by selecting a suitably small subnetwork and assuming all flows outside the
subnetwork are fixed a tractable integer program can be defined and solved using an IP solver.
Hopefully, a better solution to the whole problem is obtained by these subproblem solves. The
process can be repeated multiple times by choosing different subsets of commodities and different
subnetworks.

Both the selection of a subset of commodities and the selection of a subnetwork define a subset
of network arcs. If this subset of network arcs contains all the arcs that carry flow in the current
best solution, then we can seed the IP with that solution and ensure that we only find solutions
that are at least as good as the current best. Therefore, all our schemes for defining a smaller IP
start from the subset of arcs associated with the current best solution. Also, our schemes do not
choose arcs directly but choose paths, thus ensuring that every arc chosen exists in some feasible
solution. Examples of commodity subset selection ideas include:

• Select commodities whose paths in the current best solution use arcs for which the reduced
cost in the most recent LP solution are far from 0. Thus, we try to re-route commodities
away from arcs that are far away from satisfying complementary slackness.

• Suppose in the current best solution, there is a node with two commodities entering on a
single arc, but leaving on two different arcs. When these arcs are not fully used, the two
commodities are good candidates for re-optimization.

• Since we want to find sets of commodities that are likely to share arcs, we search for com-
modities whose paths in the current best solution are close together.

• Suppose the network is very large and there are two commodities and that have only one
feasible path from their source to their sink. In that case, it is unlikely that these paths have
a common arc hence re-optimizing commodities the two commodities together is not likely to
lead to improvements. Conversely, if the two commodities have many paths, then they arc
likely to share arcs and thus are good candidates to optimize together.

Examples of subnetwork selection ideas include (they refer to to the path-based formulation we
maintain to get dual bounds):

• Select paths that often appear in improving solutions, but are not in our current best solution.

• Select paths that appear in the optimal solution to the LP relaxation of the path-based
formulation.

• Select the path produced for each commodity by the pricing problem associated with the
path-based formulation.

Note that the approach outlined above differs in two respects from more traditional neighbor-
hood search methods: (1) the neighborhood is explored using integer programming technology, and
(2) the neighborhood selection is guided by appropriately chosen problem dependent metrics and
changes as the search progresses. Note also that this approach can be used on extremely large
instances because the algorithm never requires the full instance to be in memory.

The resulting solution approach is very effective. For instances with 500 nodes, with 2000, 2500
and 3000 arcs, and with 50, 100, 150, and 200 commodities, we compared the quality of the solution
produced by our solution approach with the best solution found by CPLEX after 15 minutes of
computation and after 12 hours of computation. On average, the solution we found in less than 15
minutes is 35% better than CPLEX' best solution after 15 minutes and 20% better than CPLEX'
best solution after 12 hours. Furthermore, we find a better solution than CPLEX' best solution
after 15 minutes within 1 minute, and CPLEX' best solution after 12 hours within 3 minutes. On
these instances the approach produces dual bounds that are 25% stronger than the LP relaxation.
We also compared the quality of the solutions produced by our solution approach with the quality
of the solutions produced by a recent implementation of the tabu search algorithm of Ghamlouche
et al. For nearly all instances in their test set, our solution is better than the solution of the tabu
search algorithm and this solution is found much faster.

Table 1 presents details of one of our experiments. It shows the value of the best solution found
by CPLEX in 15 minutes and 24 hours, the value of the solution found by our heuristic search, and
the difference in quality between the solutions found by CPLEX and the one found by our heuristic
search. An "'X" in a column indicates that no feasible solution was found. (The value reported for
our heuristic search is the value of the solution produced within 15 minutes.)

We observe that in every instance IP Search finds a better solution in 15 minutes than CPLEX
does in 12 hours. We also see that the improvement over the solution found by CPLEX in 15
minutes is significant, often greater than 30%. Even the improvement over the solution found by
CPLEX in 12 hours is impressive, often greater than 20%. Unfortunately, little can be said with
confidence regarding the true optimality gap of the solutions produced by IP Search since the dual

Table 1: Primal-side Comparison with CPLEX
CPLEX-15M CPLEX-12H IP Search CPLEX-15M CPLEX-12H

Problem Gap Gap
500,2000,50,F,L 5,301,081 5,301,081 3,910,120 -35.57 -35.57
500,2000,50,F,T X 7,927,065 5,249,040 N/A -51.02
500,2000,100, F,L 8,944,724 8,299,799 6,764,310 -32.23 -22.70
500,2000,100,F,T 10,199,000 8,306,181 7,718,750 -32.13 -7.61
500,2000,150,F,L 10,996,000 10,080,000 8,618,060 -27.59 -16.96
500,2000,150,F,T 12,115,000 10,770,000 9,448,890 -28.22 -13.98
500,2000,200,F,L 13,808,000 12,824,000 10,333,200 -33.63 -24.10
500,2000,200,F,T X X 12,425,600 N/A N/A
500,2500,50,F,L 4,611,275 4,611,275 3,841,350 -20.04 -20.04
500,2500,50,F,T 5,779,926 5,084,529 4,666,740 -23.85 -8.95
500,2500,100,F,L 9,351,042 9,251,042 6,875,420 -36.01 -34.55
500,2500,100,F,T 9,724,997 7,995,284 7,235,520 -34.41 -10.50
500,2500,150,F,L 13,660,000 12,497,000 9,730,100 -40.39 -28.44
500,2500,150,F,T 11,385,000 10,683,000 7,934,360 -43.49 -34.64
500,2500,200,F,L 15,539,000 13,468,000 11,261,300 -37.99 -19.60
500,2500,200,F,T 18,906,000 14,948,000 12,825,300 -47.41 -16.55
500,3000,50,F,L 5,098,318 5,098,318 3,596,980 -41.74 -41.74
500,3000,50,F,T 5,615,096 4,866,768 4,504,260 -24.66 -8.05
500,3000,100,F,L 8,721,798 8,721,798 6,577,980 -32.59 -32.59
500,3000,100,F,T 10,119,000 8,330,109 7,517,970 -34.60 -10.80
500,3000,150,F,L 12,628,000 12,623,000 9,214,960 -37.04 -36.98
500,3000,150,F,T 12,615,000 10,147,000 9,186,840 -37.32 -10.45
500,3000,200,F,L 15,039,000 13,441,000 10,853,400 -38.56 -23.84
500,3000,200,F,T 17,883,000 13.674,000 11.578.000 -54.46 -18 10

Average -35.18 -22.95

bounds produced by CPLEX change very little over the course of the execution and are likely to
be weak. In fact, for many of the loosely capacitated instances, CPLEX did not find a significantly
better primal solution in 12 hours than it did in 15 minutes. This highlights the difficulty that on
LP-based branch-and-bound algorithm can have in finding good primal solutions when the dual
bounds are weak.

For further details on the approach and additional computational results see:

M. Hewitt, G.L. Nemhauser, and M.W.P. Savelsbergh. "Combining Exact and Heuristic Ap-
proaches for the Capacitated Fixed Charge Network Flow Problem." Submitted to INFORMS J.
on Computing (2008).

2 Approximating the Stability Region for Binary Mixed-Integer
Programs

Suppose we have a difficult discrete optimization problem with some binary variables and a linear
objective function for these variables. In addition to finding an optimal solution, we would like to
know how much the objective vector can change while maintaining the optimality of the solution.
This stability information is useful, for example, when solving problems with perturbed objective
functions rapidly.

We consider the optimization problem

max c*x + h(y)

s.t. (x,y) S X

x& {0,1}",

(P(c*))

where c*x = YlieNciXi' ^ = {l>-,,'n} an<^ (x*>2/*) is an optimal solution. We are interested in
the stability of (x*,y*) with respect to variations of the cost vector c*.

Definition 2.1. The stability region of (x*,y*) is the region C C R" s.t. c e C if and only if
{x*,y*) is optimal for P(c). That is, C = {cGW1 : c{x - x*) < h{y*) - h{y),V {x,y) e X}.

By possibly complementing variables, we assume without loss of generality that x* = 0, so the
optimal value of P is z* = h(y*).

Remark 2.1. Let(x,y) be feasible for P, with objective value z = c*x + h(y) < z*. SupposectW
satisfies ex > z* — z + c*x. Then c $ C.

Remark 2.2. Let x £ {0,1}", and define v(x) = maxjj. ^e \ h(y). with v(x) = —oo if no y satisfies
{x,y)eX. ThenC={c6Rn : ex < h{y*) - v{x),V x € {0,1}"}.

Remark 2.2 implies that C is a polyhedron possibly defined by an exponential number of in-
equalities. We choose to approximate C using polyhedra defined by polynomially many inequalities.
The next two definitions further explain this approximation.

Definition 2.2. Let C be the stability region of (x*, y*). An outer approximation of C is a region
C+ C R" satisfying C+ 2 C. An inner approximation of C is a region C~ C R• satisfying C~ C C.

The following are two simple but important consequences of Definition 2.2 that help us obtain
small outer approximations and large inner approximations.

Proposition 2.3.

i) If C^ , C^ ore outer approximations, Cj (~l C^ is an outer approximation,

ii) If C± ,C^ o-re inner approximations, conv(Cf UC2"") is an inner approximation.

Next, we show how to obtain inner and outer approximations of C by solving n problems
{Pj : j G N}, where each Pj is given by

(Pj)

Throughout, we assume without loss of generality that all problems Pj are feasible. Accordingly,
we assume that we have solved the problems Pj for every j € N, and determined optimal solutions
(xi ,yi) with corresponding objective values Zj.

The following observation follows directly from Remark 2.1 and Proposition 2.3.

Proposition 2.1. The set C+ = {c € Rn : cx^ < z* — Zj + c*x:>, V j € TV"} is an outer approxima-
tion of C .

Let 7j = z* — Zj + c*. Observe that the outer approximation C+ of Proposition 2.1 satisfies

{c€C+ :c> c*} C {c G Rn : c* < c, < 7,-,V j £ N). (1)

In other words, in the direction c > c*, the stability region C of (x*,y*) is contained in a box
defined by the values 7j.

To determine an inner approximation, we make use of the next result.

max c*x + Hv)
s.t. (x, y)ex

x € {0,1}"

Xj = l.

Algorithm 2 Binary Solution Cover

Require: An optimization problem P with optimal solution (x*,y*) satisfying x* = 0.

Set(x0,y0)-(x*,y*), z0^z*,I^N.

Add cut D = (J2ieixi ^ l) to P-
for k = 1,..., n do

Resolve the modified P; get new optimal solution (xk, y) and objective value c*xk + h(yk) = zk.
if P is infeasible then

Set /oo <— /.
Return A: and exit.

end if
Set 1+ +- {ie_N :x$ = 1}, l£ +- IDI+.
Set I *— I \Ik ; modify cut D accordingly.

end for

Proposition 2.2. Let c? = (c\,..., C*_J,7J,C*+1, ... ,c*). Then c> S C,V j € TV.

Theorem 2.3. Suppose we order the x variables so that z* > z\ > Z2 > • • • > zn holds. Then

C- = jC>c*:^St<7j+5>*,VjeTvl (2)

is an inner approximation of C.

Corollary 2.4. The set {c + d : c G C~,d < 0} is an inner approximation of C.

These last two results motivate a natural algorithm for determining an inner approximation.
Solve each of the problems Pj in turn, sort them by objective value, and compute the inner ap-
proximation as indicated in Theorem 2.3. This procedure can be modified slightly to potentially
reduce the number of solves.

Algorithm 2 begins with a problem of the form P and an optimal solution (x*, y*) with x* = 0.
It then adds a cut ^2iejy Xi > 1, forcing at least one of the x variables to one. After resolving, it
determines which of the x variables switched, removes their coefficients from the cut, and repeats.
The end result is a list of solutions, ordered by objective value, which covers all possible x variables.
(Variables not covered by any solution on the list are those fixed to zero in any feasible solution.)
For future reference, we formally define the relevant information gathered during the execution of
Algorithm 2 as follows. The solution in the fc-th iteration is denoted by (xk,yk) and has objective
function value Zfc. The set it indicates which binary variables have value one in (x , y). The set
1^ indicates which of these variables have value one for the first time.

An outer approximation is easily obtained applying Remark 2.1 to each solution (xk,yk). To
determine an inner approximation, we must first establish a preliminary fact.

Proposition 2.1. Let i G 1^, for some k. Then (xk, yk) is optimal for P,.

Note that (x , yk) is not necessarily optimal for Pj, for j € l£\I^. We now combine Proposition
2.1 with Theorem 2.3 to construct our inner approximation.

Theorem 2.2. Suppose Algorithm 2 is run on problem P. terminating after £ < n steps. Let
(x , y), z/t, it • IZ, V k = !,...,£ and /QO be obtained from the algorithm. Then

C' =<Jc>c*: Y^ Ci<z*-zk+ Y, cJ,Vfc = 1,...,£
ie/^u-u/- ie/fu-u/,:"

6

(3)

is an inner approximation ofC.

It is important to note that the stability region C depends only on (x*, y*) and h(y), and not on
c*. However, the inner approximation we calculate using Algorithm 2 does depend on c*, because
c* appears in the right-hand side of each inequality and also because different starting costs may
determine different solutions in the algorithm when we add the inequality J2i^ixi ^ 1- So any
c* G C can be used in Algorithm 2 to obtain a possibly different inner approximation.

We next address the quality of approximation of the inner and outer regions C~ ,C+ generated
by Algorithm 2. For any c € C+ \ C~, we are unable to determine the optimality of (x*,y*) for
P(c) without re-optimizing. Ideally, we would like to estimate the volume of this uncertainty region
C+ \ C~, and perhaps compare it to the volume of C~ and C+. However, even for problems with
modest dimension we cannot efficiently estimate this volume.

In light of these computational difficulties, we have developed a "shooting" experiment to give
some idea of the relative sizes of C~, C+ and C+ \ C~. Starting from the original objective vector
c*, we generate a random direction d by uniformly sampling each component from [0,1]. We then
compute the quantities

A =max\c*+ X-—T eC } A+ = max < c* + A--— e C+ >,
A [\\d\\ J A \ ||d|| J

(4)

and use the values to compare the relative sizes of C~ and C+ in the direction d.
We performed the shooting experiment on the problem instances contained in MIPLIB 3.0.

For a given instance, we considered as x variables all binary variables that satisfied the following
conditions:

• The variable is not fixed to its optimal value in all feasible solutions. In terms of Algorithm
2, this means the variable does not belong to the set 1^.

• There is no alternate optimal solution with the variable set to its complement. That is, we
have z* > Zj.

We refer to such binary variables as "active." If a particular MIPLIB instance did not have any
active binary variables, we discarded it. We also skipped problems with more than 5,000 binary
variables and problems which did not solve to optimality within one hour of CPU time. All
computational experiments were carried out on a system with two 2.4 GHz Xeon processors and
2 GB RAM, and using CPLEX 11.1 (with default settings) as the optimization engine. For each
instance, we generated 100,000 direction vectors d.

Table 2 contains average results for our experiments. For each instance, we report the total
number of decision variables (# vars), the total number of binary variables (# bin), the number
of active binary variables (# active), the Euclidean norm of the cost vector corresponding to the
active variables (||c*||), the average A~ and A+ values, and their ratio. For example, for problem
lseu, 85 of 89 decision variables are active. In the directions tested, C~ occupies 87% of the volume
of C+, but both regions allow only for a relatively small change in c*, since ||c*|| is significantly
larger than A~ and A+.

As Table 2 indicates, the estimated volume ratio of C~ and C+ varies significantly from one
instance to the next. On one end, Algorithm 2 delivers a fairly tight approximation for problems
dcmulti (92%), enigma (95%), and lseu (87%), to name a few. In fact, Algorithm 2 even delivers
the exact stability region for p0033. On the other, the volume ratio is very small on instances such
as p2756 (7%), vpml (3%) and vpm2 (14%). This discrepancy is certainly in part due to differences
in the number of active binary variables (14 in enigma and 2,391 in p2756,) since volume differences

tend to grow as dimension grows. However, part of this discrepancy is also instance dependent, as
some problems with similar number of active variables have very different ratios.

Overall, the experimental results indicate that the volume of C+ \ C~ is significant for some
instances.

Therefore, we next address the cause of this discrepancy: Are we under-approximating C~ or
over-approximating C+? To answer this question, we performed the following additional experi-
ment. For each of the first 1000 random directions d that yield A" < A+, we construct a new cost
vector

, A" + A+ d _. . ^_

and re-optimize the problem with this new objective. We then count the number of times the
original optimal solution (x*,y*) remains optimal for the new cost vector c±. The next column in
Table 2 (OIO, for "original is optimal") reports these counts for all instances except p0033. With
the exception of dsbmip, rentacar and rgn, the original solution is optimal most of the time, with
most instances recording counts above 800 and many getting 1000. These results indicate that
the uncertainty region C+ \ C~ is caused primarily by an excessive under-approximation of C~.
They also suggest that (x*,y*) is likely to remain optimal inside C+, even when this fact cannot
be guaranteed.

, „
T — — © — —. — — © — Q CO 1— o Q on 00 O 00 Q p a — p or — , — CO x ro CO ~ o —1 — o o ro o or
~l : : - : co :) 1 1 • : ! : a: c : to :r> : : : • CO ! 5 c: c ! rr r ~ : : c ; (: 1 : r- :) -r c : : r CO ro

a r- ') - - ~ 1 ' - i - ! C5 •• CO 31 :) . > x ; 1 c ; : > c I :) () .- : o a C 1) co CO (: — • : s . ; en on
u ~ —i T—1

—
r^ i—) ~ — — •-< 1-1 ~ — i— " rt

•~
—i —i ~ ' ~ —I

— 1-1

o
o

0) in co- r i r __ in -T r- CN t- X; CO T — ^ 00 i- OI I- 35 m X CO IN r- Q CO — io l'r OS CN CN ro s 31 _ CO ro -r « hfl t~ CO — — r- — co ei 00 t- — uo o — CN io or 00 rH m Ol CO ro ro ro
H

CO ro -r ro CO CO I- a cro ro 1- r- O rn

(N

! +
o O O O O o ro a CO o O = o ro 00 CO CO CO CO CO CO CO CO C CO CO CO CO CO O CO o CO o C ro ~ ro o o

f s ~ or m CO in n in CO [O -r CN -o i- — x CN io in m ^ r __ 1- OS CO CO ro Or ro "• CO CO ro ro

bO >
-1 1- r- CD 1- CO - CN T —i / i—' :) ro ' ' c) CN •cf CO m o- m OI C in cc i—i —• CN •—1 'Cf IO m rr rr " OS r- ro m
+ 00

lO a i- O t- O 30 CN — cr O)
CN =

r-
+ CO + oo in CN CO

ro — r- -T + X
OI ro — CO m in — m m 00 00 f t-- rr TJ- O

UJ — CN W UJ rH CO UJ io Ol rH —i '—' UJ rr

: - / OI x TO
CO / on ro ro

-<. — —;
oi

-T

o ro

ro

 . m IO- x [- Of) _
T-H ni X „ C*3 o — T o in — m OO ^ „ CO co o m ro _ N CN o m — rr x or roc — l- N rH on

bO >
! 1 -r : ; CN — (N re cc: ro IC CO IN ro •! / w JC in oi CO 1 1 CO i -r i: LO CO ~0 CO ro or Ir CO in

+ X O CO o ro O r- rH t^
ro 1- 35 + "^ + ro •« 00 oo

pH
CO OI rr + l- ro 00 on in ro O — rr i- i in 00 o o w rr r- li w CO' u. —i —' l-H UJ

CO -H h- : '
m : J ^1

-<
rH ~

co
ro

CN O

'-- in 00 © o >o rmi o CO O CO m cc IC " h- 00 ^H • TP CO o CO CO 1- in IO CN in -H- — or |r 1- ro C o o rr. on <-^
O no OS r| --; ro r- ! : i i ! 1 (I c : — CO 1' o — . i .') : S — r r CO CN

ro
in
m

+
-
o
cc

-0
-T +

W
CO

ro

CO
in

co +
W
-)
CO

I-

-
t- o

\
H
CO

1-

+
t-
X

CO

+
CN
00
ro

+
m
OI
OI

X
00

a>
CO
CO
OI

ro ro +
UJ
CO
CO —

f
UJ
OI
00
Ol

0! 1-
IO

iO
1-
CO

oi

u:
CO
Ol
rO

+
UJ
I-

-o

ro

Ol Ol +
UJ —
ro
ro

o o

03 ^ " in _ — oo —• OS 00 — r^ Q C.O CO CN -T no in CO CO CO CN ^_ CO CO r _ _ rN rO ^H in -T -o — ~ CN ro in TJ* CO
ro CN r - CN CO r- ••• / -t M CN / on m O ro ro ro CN ro nt) / ;0 CO CO CO CO ni -"

*g CN CN ro — re CM M CN CO —i ^ — m -f —i CN — ~- CN CN N 1—1 1—1

u "H — OI -oi — 1-1

*

e OS - ,_, in o in © <* x -T —' ~ CO CO -T -T CO CO x or CO CN or m CO x ro _ CN oo CO m •!f — 00 "/ in a ro on x
-£> ro co o~ l- co lO in r- 1* / -r CO ^1 oi -/ v io LO m :o CO: CO : c / re- io in CO cc 00 on m — co CO

nj ^i rO ~^ CN r~ CN CO ro to CN CN in 1- -N CN N

* OI Ol

CO ro — co on cc ^ ~ on oo ~5 -H -r CN CN 00 O m OS
, ^ n X a in on CN CO ,,

IN 00 CO CO — O
„ i- m ON 00 00

cB >
CO — m -o / -T — —. lr- t- ^1 CN !- in v. • o X x N LO CO c r in I- CN ro - r — 1- / — rO — — in x r- 1^

DO in 00 CN or) / CN CN r^ m or ro —i / o- CO CIC — CN CN IO r- n| CN in m ,- r^ ro co
—1 •—i •—i —i • 1 —i —i —i ro i—i OI CO CN —i —i CO

*

3
O
Ul

(0
ro
rH
nH

QJ
JO J3

CN
-o
G
0)

T-t
JO

•H
4H

H
3
i:
u

•a

a.
•H
e &
co

P
O
Ml
CD

to

&
•H

c
CD

H
CD

JO
H

HH

CD
c>
CD
C
X

•H
MH

c
CD

bO

O

CM

CO
CD

M

CM

CD
CO

CD

o
m

LO
a
be

ro
a)
CO
CD
hO

CN

bo

o
LO
CN
LO
O
JO
J5

>
(0

i-H
CM
LO

r-i

3
CD
CO

rH

00
it)

S

CD

co

CO
o
u
CO

•H

B

CO

o
u
CO

•H

S

C0
o
o
T3
O
s

o

o
XI
o
E

o
•a
o
S

JO
o
r^
U0

•0
o
B

en
ro
o
o
P,

rH

O
CN
O
P,

CN
CO
CN
O
P,

CO

LO
o

CD
CO
N
CN
a.

rH
CO

CO
o &.
p.

CO
H
u
<0

CO
O
P.
P.

o

CD
c
a-

CD

c
cr

rl
Cfl
CJ
id
CJ
a
CD

u

a
ho
u

jrc
u

CJ
CD
CO

rH CN
a s
a. p, > >

o:
x

q
OO

r^

.3

13
ft
X
CJ

zt
ro

0
C —

•S.

rC

For further details on the approach and computational experience with the algorithms see:

F. Kihng-Karzan, A. Toreillo, S. Ahmed, G.L. Nemhauser, M.W.P. Savelsbergh. "Approximating
the Stability Region for Binary Mixed-Integer Programs." Submitted to Operations Research
Letters (2008).

3 Information-based Branching for Integer Programming

Branch-and-bound (B&B) empowered with advanced features such as presolve, cuts, heuristics and
strong branching is the preferred algorithm for solving Mixed-Integer Linear Programming (MIP)
problems. We focus on branching. A subproblem corresponding to a node in a B&B-tree is fathomed
when we are able to certify that it has been fully explored, that is, all feasible solutions to it have
been explicitly or implicitly visited; otherwise, it's referred to as an open subproblem. In a BE^B-
scheme, open subproblems are generated in a rigid way, depending on the branching rule. In fact,
every open subproblem is restricted to be identical to a previously examined subproblem except for
its last chronologically branched variable. Therefore, inappropriate branchings performed at the
beginning can jeopardize the effectiveness of the branch-and-bound method.

Changing the policy for branching variable selection can have a dramatic effect on the over-
all time needed to solve a problem. Most existing branching variable selection methods either
estimate the impact of the candidate variables on the objective function of the LP relaxation or
provide bounds on the degradation. The candidate variable having the greatest estimated impact
is then chosen for branching. The motivation is to select the branching variable that maximizes the
degradation of the objective function value at the optimal solution of the child node LP relaxation,
which gives a tighter bound on the unsolved nodes.

The "information-based variable selection methods" we have developed use a variety of means
to estimate the impact of each candidate variable on fathoming based on previously collected
information. These new methods recognize that the branching decisions made at the top of the tree
are the most important ones. In order to make more informed decisions at the top, first a traditional
B&Bis started and after a certain amount of information is collected from the fathomed nodes, the
process is halted. A restart of the Z?filBempowered by exploiting the information contained in a set
of previously fathomed subproblems is performed. In contrast to the current branching variable
selection methods based on the degradation estimate in the objective function value, we favor the
variables that have the most impact on the fathoming of the child nodes. The general idea is to
arrive at child nodes which are closer to being fathomed, in the hope that one or both of the child
nodes will never be expanded. Note that using the information derived directly from the previous
search nodes, as in backjumping or learning B&B, may be ineffective, as they have been "spoiled"
by inappropriate branchings earlier in the process. Instead, in our approach, we strengthen the
information on fathomed subproblems by eliminating the unnecessary branching decisions which
had no effect on their fathoming. In addition to new branching methods, we use this information
in propagation and in the generation of valid inequalities.

We consider the MIP problem

mm I cTx + dTy | Ax + By ^ b, x G {0, l}n, y e Rk
+) (p)

where c e Kn, d € Rk\ b e R"\ A 6 Kmxn and B £ Rmxfc. Its LP relaxation is obtained by
replacing x € {0,1}" by 0 < x < 1.

Recall that in a B&B-tvee, or for short a tree, a node can be fathomed in three ways: (i) the
node LP-relaxation is infeasible, (ii) the optimal solution to the node LP-relaxation is integer, and
(iii) the optimum value of the node LP-relaxation is no better than the objective value of the

10

currently best known integer feasible solution. To formalize the notion of fathoming, we use the
following notation.

We say /• is the fixing of the variable j to the value I e {0,1}. Let NQ denote the root node,
Ni denote a node in the tree and Cj = C® U C\ be the set of binary variables fixed at node Ni,
where Cf (C/) denotes the indices of binary variables fixed to 0 (1). Without loss of generality, we
assume that Co = 0.

Definition 1. If Ni is a fathomed node of a binary tree, then Ci is called a clause corresponding
to node Ni. When \d\ = n, the clause is called trivial.

Definition 2. Let C be a clause. If C \ /j is not a clause for any /• G C, then C is called a
minimal clause.

If C is a minimal clause, any node Ni in the tree with Ci C C cannot be fathomed by any of the
fathoming rules. Moreover any node Ni with Cx 2 C can be fathomed together with the subtree
rooted at Nt. Note that there exists a minimal clause (not necessarily unique) associated with each
fathomed node in any binary tree.

Given a clause C = C° U C1, the inequality

^x2+^(l-x2)>l (5)

eliminates all solutions that do not comply with it. Clearly (5) might cut off some feasible solutions.
However, the region cut off by (5) is guaranteed not to contain any feasible solution with an objective
value better than the optimal objective value. Note that (5) is a generalized cover inequality and
hence by obtaining minimal clauses, we actually derive a minimal generalized cover inequality for

(P)-
We wish to efficiently identify the most useful clauses and use them effectively in B&Eby

exploring the restart framework. Our approach is mainly based on deriving information in the
form of clauses from the fathomed nodes of a partial tree. We employ this information in guiding
the search through designing advanced preprocessing, propagation and branching schemes as well
as in generating valid inequalities of the form (5). It is quite likely that the clauses obtained from a
partial tree are not minimal. So we strengthen the information on fathomed nodes by eliminating
the unnecessary fixings which had no effect on fathoming. We do this by solving a MIP model that
obtains a minimal clause from a given clause.

Next, we present a model that can be used to generate a minimal clause of minimum cardinality.
Without loss of generality, we assume that the upper and lower bounds of the binary variables are
also included in the original formulation as constraints. Let v* be the objective value of the optimum
solution to (P). We can fathom any node of the tree which is either infeasible or has an objective
value greater than v*. Fathoming by integrality is quite infrequent in practice and given v*, we can
simply fathom all nodes with objective value greater than or equal to v*, which includes fathoming
of all integer solutions as well.

Consider a leaf node of the tree that is fathomed by bound and denote the corresponding set
of variable fixings by C = C° U C1. The LP relaxation of this leaf node is

mil \c x + d y

S.I Ax + By >b

Xi > 1 VieC1

-Xi>0 VieC0

i£R"+, y G R^

11

Define the following variables:

I 0, c
f inequality — x; > 0 is added to the LP relaxation;

otherwise,

and

nequality Xt > 1 is added to the LP relaxation;
otherwise.

j f 1, ifi
Zl " \ 0, otl

Using these new variables, the following MIP

min ex + dry

s.t. Ax + By > b

z\xi > z\ VieC1

- z°Xi > 0 VieC0

iel", ye Rk
+

z^z/e {0,1}.

is equivalent to the node LP when all of the binaries in it are set to 1.
We want to find a minimum number of bound inequalities such that their inclusion in the

original linear programming relaxation of (P) will still lead to a fathoming, i.e., either the LP
relaxation is infeasible or the objective value exceeds the lower bound value, v*. Since the original
root LP relaxation is assumed to be feasible and bounded from below, its dual is also feasible. Thus
we know that in the case of infeasibility of the node LP, the dual of the node LP is unbounded
since when we add new bound inequalities to the primal, we are just adding new columns to the
dual of the node LP. Therefore when a node is fathomed by infeasibility, we will be able to find a
dual solution with an objective value strictly greater than v*. So now we consider the dual of the
above formulation by treating the variables zf and zl as parameters and we obtain

max \Tb+ ^2 -ylzl
iec1

s.t. \TAl + flzl < ct Vi e C1

A7^, - ~f?z? < Cl Vi e C°

XTAl<cl Vze {l,...,n}\(C°UC1)

\TBj<dj Vj e {l,...,/c}
A;>0 V/e{l,...,m}

7°,7*>0.

Since we are only interested in the existence of dual solutions with objective value greater than
or equal to v*, we can equivalently turn the objective into a constraint. By considering zf and
zl as binary variables with the condition that at most one of them can be set to 1 for each i
(since C° fl C1 = 0, we don't need to include these constraints explicitly), we obtain the following

12

formulation where we minimize the number number of z? and zj:

min Y^ zi + J2 z\
ieC° ieC1

S.t.X
Tb+^2lUl> V*

iec1

XTAl+1\z\ <a VzGC*1

XTAr - jfzf < ct v?eC°
XTA, < c Vie {1,.. ,,n}\(C°UC1)

XTBj < dj Vj G {1, . .,k}
A; >0 VZe{i,.. .,m}

zlzle {0,1}, jf,jl>0.

In order to bound the dual variables 7 and A from above by 1, we introduce another variable
a and also to linearize the model, we introduce u® and u\ for the nonlinear terms -yfzf and i}z\
respectively:

min Yzi + J2 z*
i€C° ieC1

s.t. AT6 + Y^ u\ - av* ^ °
iec1

XTAl + u\ - aci < 0 Vi G C1

ATA2 - u° - ac2 < 0 Vi e C°

ATAt-acl<0 Vie{l,... »}\(C °UC')

ATBJ-adJ<0 Vj'€{l,... k}

u?<7?, u?<z?, u?-7°-z?> -1 VieC0

"i < 7,1, ""! < «i, "1 - 7,1 - zj > -1 Vi e C1

0 < Xi < 1 vze{i,... ,m}

2?,^ 6 {0,1}, 0<ti?,uJ,T?,7/<l
0 < a.

Note that the fixing of the last variable on the path from root node to a leaf node is the main
cause of fathoming done at the leaf node. Hence in any feasible solution to the above formulation,
we will always have the corresponding binary variable (z® or z\) fixed to 1. In our computations,
we take advantage of this fact by actually fixing the value of the last branched variable in this MIP
and we replace a > 0 with a > 10 .

Let C = {C\,..., CK} be a set of clauses in a partial tree. Consider a node of the tree N other
than the root node, and let C°(Cl) denote the set of binary variables fixed to 0 (1). We say a
clause C = C° U C1 is active at TV if C° D Cl = 0 and C1 D C° = 0, i.e. if it's possible to obtain a
child node (not necessarily immediate) from the current node that can be fathomed by the clause
C. Whenever a clause becomes inactive for a particular node, it will remain inactive for all the
child nodes of that node. Since some variables are already fixed at N, the active clauses can be
updated using this information, i.e., the clause C = (C° \ C°) U (C1 \ C1) indicates the possible
extension of the current node to a child node which can be fathomed by clause C. In the rest of
the text whenever we refer to an active clause at a node, we actually refer to the updated version
of the clause.

13

Whenever an active clause C has only one variable, i.e., \C\ = 1, we can immediately fix the
value of that variable. Suppose C = C° = {j}, then we can set x3 = 1 and create only a single
child node, as the other branch will automatically be fathomed by the clause. We refer to this ;is
propagation.

Given a node and a set of active clauses at that node, there are several ways to use this
information in determining a branching variable. Let x be the vector of current LP relaxation
values of variables at the node. We first weight each active clause, denoted by cj(Ci), to estimate
its importance in fathoming. We have tested four different alternatives to estimate ui(d):

i) w(Ci) = 1 for all clauses C* (i.e. all clauses are of equal importance),

ii) uj(Ci) = 7^-7 where |Cj| is the number of variables included in clause C, (i.e. short clauses are
preferred),

Hi) ui(Ci) — y , r^1 7T—- -, , where we look at the possible closeness to violation of the ; v ll 22jec9x}+2-,iecl(1~x3>~1

clause inequality (5),

iv) Lj(Ci) = 2~\c,\ (exponentially higher preference given to the shorter clauses).

Then using the weights of the clauses, we estimate the effectiveness of fixing the binary variable
Xj to 0 (1), denoted by 0° (/?]). We have tested two alternatives to estimate the overall effect of
creating a branch with Xj =0(1):

0 0J = Ei:j€C? w(C«) and 0} = £rjeC, «(<*),

a) (?j = max{u(d) : j G Cf) and (3) = max{u;(CI) : j € C}}.

Let /3j denote the overall effect of a branching on variable Xj. To estimate [jj, we need to
combine $ and /31. Inspired by currently used branching rules, we suggest and test the following
alternatives:

i) 0j = mm{xj,l-Zj}*(tfl+0}),

it) /?j=/?° + /?j,

in) Pj = max{/30,/3|} + 10 * min{^,/3j}.

Note that the first alternative considers the fractionality of the variable, whereas the second one
simply adds the individual effects and the third one is similar to the weights used in strong branch-
ing.

In Table 3, we report computational results for a set of difficult instances from MIPLIB. We
provide information about the collection phase (solve time, number of clauses collected and the
average size), the improvement phase (minimum, average, and maximum solve time, number of
clauses improved, average size after improvement), and the solve phase (number of nodes and
solution time CPLEX, information-based search with basic clauses Basic, and information-based
search with improved clauses Improved. If we compare the node counts for CPLEX and Improved,
we see that in all of the instances the node counts decrease and the improvements in harder problems
are more significant (for mas74 reducing from 1656970 nodes to 1167900 nodes, for qiu from 15862
to 5139, and for rout from 45051 to 10933). These improvements in node counts also generally
lead to improvements in solution times.

11

"3
V

P

a.

a

-J
a,
O

CO Ob
CO Q

LO S

CO M
•* CO

O LO
CO

8^
Cb o
t~~ T—(

g 00
LO ob
CD 00
rt CN

S3 o= CO 00

CO -<
CO -^

!2 =" CO CO
LO
CO 30
t—1 LO

"^ CN
CN in
SO • c ^
in t—

S "?

CT1

•-a

CN ^

CN "
** o

rt p
—< CN
rt r-

CO O
00 (^
CN _

CN ^

CT1 to
t- CN

? CO
f- CN

GO 0>

5 •*
2 LO
Cl CN

2CN
to ^

^ ft
CN 2

n
2 q
oo =§
LO ^
^H Ob

CO ^o
CO oq

O c^
'—' -—I

CS (->
CM ^i

in &

9 <>

CTl fv_

CTl |s_

—i CT>

CTl N_

3 ^
CN C71

V
s

"w

a*
-=

% 0

•5 -

00

o "?

o q

o 5?
o

LO
CM

oi

CO

Tf JO
00 ^
t*- _;
•^ CN

o "?
(N o

CO
o q

o

crn

CO

QO
CN

^ 2!
CO ^
^N —
CN S

h- X
CN N
CO CO

o q
o

os
LO

d

CN

00 "0

O co

in Ob
<-c o

o q
o

CO

o

LO o

CO

^>
°3 N*

LO

LO
CN

ci

CO

CO g
00 ^

Tf r-i

CJJ "^

•* o

o q
o

Ob
CO

CN

00 o

C <N
CO 00

•H 00

CO ^
(^ CO
c ^,
CN in

CO
o ^

CN

in

CT)

CO

oi

Ol
—* CN

o

LO
o P

o

in

LO

o

m

ci

o o

a

1*
U

"3
O

CN
CN

LO

io ^
Ob o
CO to

01
CN

CD
CN

O o
CN

•«f
»o .-,
CN U0

q
CN
CN

o o
CN

2oi

CO

CO
CN

o o
CN

CM

00

t~

o
o
CN •

Ob

00 ~
LO CJ:

O

CN

oi
CN

O o
CN

2 <-
LO to

2 O

CO
CO

LO

o o
CN

Is
CN

o

to
CN

2 s
CN Q6

in

in

o
o
CN

FH C71
t, CN

O

cfi
CJ

1 1

o

CN rt
n
9
bO

CO
CO

= £

n
a
E

vi
a

"O CJ

9 £

*

CO
r»
u
id
5

•Ji

o
u
W

•H
a

o

9 £

o
T)
O
B

CO
CD

° £
*

0,

c/b
U

•B cj

9 E

3
•H
CT O

o

2 £

lO

•H

•P
CO

0 a -

o

—

15

For further details on the approach and additional computational results, see:

F. Kihnc-Karzan, G.L. Nemhauser, M.W.P. Savelsbergh. "Information Based Branching Rules for
Binary Mixed Integer Problems." Submitted to INFORMS J. on Computing (2009).

Hi

